Improving Accuracy of Event-Related Potentials Classification by Channel Selection Using Independent Component Analysis and Least Square Methods

نویسندگان

  • Wenxuan Li
  • Mengfan Li
  • Wei Li
چکیده

1 Improving Accuracy of Event-Related Potentials Classification by Channel Selection Using Independent Component Analysis and Least Square Methods; Wenxuan Li, School of Electrical Engineering and Automation, Tianjin University, Tianjin, China Mengfan Li, School of Electrical Engineering and Automation, Tianjin University, Tianjin, China Wei Li, School of Electrical Engineering and Automation, Tianjin University, Tianjin, China & Department of Computer and Electrical Engineering and Computer Science, California State University, Bakersfield, CA, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طبقه‌بندی پتانسیل‌های وابسته به رخداد مربوط به حافظه در بازشناسی تصاویر جدید و قدیم با استفاده ‌از ویژگی‌های زمان-فرکانس

Abstract: The object of this research is development of memory assessment system, using Event Related Potentials. Our approach is using ERPs recorded on Fz, Cz and Pz electrodes. Subjects made old/new recognition judgments on new unstudied unmeaning pictures and old pictures which had been presented at study phase. Features related with memory activity in time-frequency domain were used to achi...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Improving Chernoff criterion for classification by using the filled function

Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...

متن کامل

Thesis Single-trial P300 Classification Using Pca with Lda and Neural Networks

SINGLE-TRIAL P300 CLASSIFICATION USING PCA WITH LDA AND NEURAL NETWORKS A brain-computer interface (BCI) is a device that uses brain signals to provide a nonmuscular communication channel for motor-impaired patients. It is especially targeted at patients with ’locked-in’ syndrome, a condition where the patient is awake and fully aware but cannot communicate with the outside world due to complet...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJSSCI

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016